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First problem

For a random vector X = (X1, . . . ,Xd) with maximum M = maxi Xi , the first problem we
consider is estimating

α(γ) = P(M > γ) .

We construct estimators for this probability, which are in terms of

E(γ) =
d∑

i=1

1{Xi > γ} ,

the random variable which counts the number of Xi which exceed γ.
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First glance at estimators

Our two main estimators in this setting are

α̂1 =
d∑

i=1

P(Xi > γ) + (1− E(γ))1{E(γ) ≥ 2} , and

α̂2 =
d∑

i=1

P(Xi > γ)−
d−1∑
i=1

d∑
j=i+1

P(Xi > γ,Xj > γ)

+
[
1− E(γ) +

E(γ)(E(γ)− 1)

2

]
1{Er (γ) ≥ 3} .
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Second problem

The next problem we consider is estimating

βn(γ) := E[Y1{E(γ) ≥ n}]

for n = 1, . . . , d and some random variable Y . We do not make any assumptions of
independence between the {Xi > γ} events themselves or between the events and Y .
The subcase of Y = 1 a.s. has some interesting examples:

β1(γ) = P(M > γ) = α(γ) , and βn(γ) = P(X(n) > γ)

where X(1) ≥ X(2) ≥ · · · ≥ X(d) are the order statistics of X. The probability of a parallel
circuit failing is a simple application for P(X(n) > γ).
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General setup

Let A(γ) = ∪d
i=1Ai (γ) be the union of events A1(γ), . . . ,Ad(γ) for an index parameter

γ ∈ R. We consider the problem of estimating P(A(γ)) when the events are rare, that is,
P(A(γ))→ 0 as γ →∞. Define

α(γ) := P(A(γ)) and E(γ) :=
d∑

i=1

1{Ai (γ)} .

Note that we recover our introductory example by having Ai (γ) = {Xi > γ}. Aside from
this example, A(γ) is quite general (a union of arbitrary events) and many interesting
events arising in applied probability and statistics can be formulated as a union. The
quantity βn(γ) is reminiscent of expected shortfall from risk management.
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Inclusion–exclusion

P(A ∪ B ∪ C) = P(A) + P(B) + P(C)

− [P(A,B) + P(A,C) + P(B,C)] + P(A,B,C)

Pat Laub (UQ&AU) Efficient simulation for dependent rare events 9 / 39



Inclusion–exclusion

The inclusion–exclusion formula (IEF) provides a representation of α as a summation
whose terms are decreasing in size. The formula is, for A = ∪iAi ,

α = P(A) =
d∑

i=1

P(Ai )−
d∑

1=i<j

P(Ai ,Aj) + · · ·+ (−1)d+1 P(A1, . . . ,Ad)

=
d∑

i=1

(−1)i+1
∑
|I |=i

P
(⋂

j∈I

Aj

)
.

The IEF can rarely be used as its summands are increasingly difficult to calculate
numerically. The P(Ai ) terms are typically known, and the P(Ai ,Aj) terms can frequently
be calculated, however the remaining higher-dimensional terms are normally intractable
for numerical integration algorithms (cf. the curse of dimensionality
[asmussen2007stochastic]).
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Bonferonni inequalities

Truncating the summation can lead to bias, and indeed by the Bonferroni inequalities we
have:

P(A) = P(∪iAi ) = α ≤
∑
i

P(Ai ) (Boole–Fréchet)

α ≥
∑
i

P(Ai )−
∑
i<j

P(Ai ,Aj)

α ≤
∑
i

P(Ai )−
∑
i<j

P(Ai ,Aj) +
∑

i<j<k

P(Ai ,Aj ,Ak)

This higher-order intractability motivates our estimators which use the IEF rewritten in
terms of E =

∑
i 1{Ai}.
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Constructing IEF estimators

Remember IEF:

α =
d∑

i=1

(−1)i+1
∑
|I |=i

P
(⋂

j∈I

Aj

)
=

d∑
i=1

(−1)i+1 E
[∑
|I |=i

1
(⋂

j∈I

Aj

)]

Proposition

For i = 1, . . . , d ,
∑
|I |=i 1 {∩j∈IAj} =

(
E
i

)
1{E ≥ i}

Proof.

∑
|I |=i

1{∩j∈IAj} =
d∑

k=i

∑
|I |=i

1{∩j∈IAj ,E = k} =
d∑

k=i

(k
i

)
1{E = k} =

(E
i

)
1{E ≥ i} .
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Estimators

E
[ d∑

i=1

(−1)i−1
(E
i

)
1{E ≥ i}

]
=

d∑
i=1

(−1)i−1 E
[(E

i

)
1{E ≥ i}

]
= IEF1 + IEF2 + · · ·+ IEFd

= α .

We present estimators which deterministically calculate the first larger terms of the IEF
and Monte Carlo (MC) estimate the remaining smaller terms using sample means of the
above.
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First estimator

We begin by constructing the single-replicate estimator α̂1 where the first summand is
calculated and the remaining terms are estimated:

α̂1 : =
∑
i

P(Ai ) +
d∑

i=2

[
(−1)i−1

(E
i

)
1{E ≥ i}

]
=
∑
i

P(Ai ) + (1− E)1{E ≥ 2} , using
n∑

k=0

(−1)k−1
(n
k

)
= 0 .

In identical fashion, the single-replicate estimator calculating the first two terms from the
IEF is

α̂2 :=
∑
i

P(Ai )−
∑
i<j

P(Ai ,Aj) +
d∑

i=3

[
(−1)i−1

(E
i

)
1{E ≥ i}

]
=
∑
i

P(Ai )−
∑
i<j

P(Ai ,Aj) +
[
1− E +

E(E − 1)

2

]
1{E ≥ 3} .
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General form of the estimators

Thus, for n ∈ {1, . . . , d − 1},

α̂n :=
n∑

i=1

(−1)i−1
∑
|I |=i

P
(⋂

i∈I

Ai

)
+
[ n∑

i=0

(−1)i
(E
i

)]
1{E ≥ n + 1} . (1)
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Properties of these estimators

Thus, {α̂1, . . . , α̂d−1} is a collection of estimators which allows the user to control the
computational division of labour between numerical integration and Monte Carlo
estimation. N.B. If we look at α̂0 we get the CMC estimator 1{E ≥ 1}.

The α̂n estimators are of decreasing variance in n, however each estimator carries the
assumption that one can perform accurate numerical integration for 1 up to n
dimensions. As numerical integration can be slow and unreliable in high dimensions we
focus on α̂1, and also show the numerical performance of α̂2.

In practice, theses estimators will exhibit very modest improvements when compared
against their truncated IEF counterparts. When combined with importance sampling the
improvement is marked.

We do assume knowledge of marginal distributions.
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Discussion of the α̂1 estimator

The estimator α̂1 has some nice interpretations. Recall the Boole–Fréchet inequalities

max
i

P(Ai ) ≤ α = P(A) ≤
∑
i

P(Ai ) =: α . (2)

The stochastic part of α̂1 is an unbiased estimate of α− α ≤ 0. That is to say, α̂1 MC
estimates the difference between the target quantity α and its upper bound given by the
Boole–Fréchet inequalities, α. Similarly, we often have

α(γ) ∼
∑
i

P(Ai (γ)) , 1

for example when the Ai exhibit a weak dependence structure. In this case, we can say
that α̂1 MC estimates the difference between α and its (first-order) asymptotic expansion.

1Using the standard notation that f (x) ∼ g(x) means limx→∞ f (x)/g(x) = 1.
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Relation of the α̂n estimators to control variates

An alternative construction of {α̂1, . . . , α̂d−1} is to add control variates to the crude
Monte Carlo estimator α̂0. We begin by adding the control variate E to α̂0 with weight
τ ∈ R:

α̂τ1 := 1{E ≥ 1} − τ
[
E −

∑
i

P(Ai )
]
.

Setting τ = 1 means this estimator simplifies to α̂1. Next, we add the control variates E
and − 1

2
E(E − 1) to α̂0, and setting the corresponding weights to 1 gives α̂2. This

pattern goes on.
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Importance sampling (first-order)

Standard IS theory says condition on A = ∪iAi = {E ≥ 1} occuring. We use a mixture
distribution as a proposal. Say that we condition on Ai with probability

pi :=
P(Ai )∑
j P(Aj)

=
P(Ai )

α
, for i = 1, . . . , d .

Why? If P(Ai (γ),Aj(γ)) = o(P(Ai (γ))) often occurs for all i 6= j , then

P (Ai (γ) | A(γ)) =
P(Ai (γ))∑

j P(Aj(γ))(1 + o(1))
∼ pi (γ) , as γ →∞ .

Now consider the measure

Q[1](A ) =
∑
i

pi P(A | Ai ) ∀A ∈ F ,

which induces the likelihood ratio of L[1] := dQ[1] /dP = α/E . As

α + (1− E)1{E ≥ 2}L[1] = α
(

1 +
1− E

E

)
=
α

E
under Q[1] ,

⇒ α̂
[1]
1 :=

1

R

R∑
r=1

α

E
[1]
r

, (3)

where the E
[1]
r are iid from Q[1]. Same as Adler et al. [adler1990introduction].
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Importance sampling (second-order)

Continuing in the same pattern, consider the second-order IS distributions where
{E ≥ 2} occurs almost surely, to be applied to α̂2. Say that we choose to condition on
Ai ∩ Aj with probability

pij :=
P(Ai ,Aj)∑

m<n P(Am,An)
=

P(Ai ,Aj)

q
, for 1 ≤ i < j ≤ d ,

defining q :=
∑

i<j P(Ai ,Aj). Now consider the measure

Q[2](A ) =
∑
i<j

pij P(A | Ai ,Aj) ∀A ∈ F ,

which induces a likelihood ratio of

L[2] :=
dQ[2]

dP
=

q∑
i<j 1{AiAj}

=
q(
E
2

) =
2q

E(E − 1)
.

Thus, after simplifying, the estimator α̂2 under Q[2] is

α̂
[2]
2 := α− 2q

R

R∑
r=1

1

E
[2]
r

. (4)
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Example: α(1) = P(max{X1,X2} > 1)

Region of interest

0 1 2 3 4
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Example: α(1) = P(max{X1,X2} > 1)

First-order importance sampling

0 1 2 3 4

0

1

2

3

4

Pat Laub (UQ&AU) Efficient simulation for dependent rare events 21 / 39



Example: α(1) = P(max{X1,X2} > 1)

Second-order importance sampling

0 1 2 3 4
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Importance sampling (extra requirements)

First-order IS:

can simulate from P( · | Ai ),

can calculate the P(Ai ).

Second-order IS:

can simulate from P( · | Ai ,Aj),

can calculate the P(Ai ) and P(Ai ,Aj).

Normally (at least for extremes) can calculate P(Ai ) and P(Ai ,Aj) with Mathematica
or Matlab. The prohibitive part is being able to simulate from conditionals.
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Second problem – βn

Now, we turn our attention to the estimation of

βn := E[Y1{E ≥ n}] .

We start with β1 and the partition

A :=
d⋃

i=1

Ai = A1 ∪ (Ac
1A2) ∪ · · · ∪ (Ac

1 . . .A
c
d−1Ad) . (5)

This gives us

β1 = E[Y | A1]P(A1) + E[Y1{A1} | A2]P(A2)

+ · · ·+ E[Y1{Ac
1 . . .A

c
d−1} | Ad ]P(Ad) .

If we assume it is possible to sample from the P( · | Ai ) conditional distributions (same as

for α̂
[1]
1 ) then each of these conditional expectations can be estimated by sample means:

β̂1 :=
d∑

i=1

P(Ai )

dR/de

dR/de∑
r=1

Yi,r1{Ac
1 . . .A

c
i−1}i,r . (6)

Here, the Yi,r and 1{·}i,r are sampled independently and conditional on Ai . The
following proposition gives the partition of the event {E ≥ i}:
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Partition

Proposition

Consider a finite collection of events {A1, . . . ,Ad} and for each subset I ⊂ {1, 2, . . . , d}
define a

BI :=
⋂
j∈I

Aj , CI :=
⋂
k /∈I ,

k<max I

Ac
k .

Then
{E ≥ m} =

⋃
|I |=m

BI =
⋃
|I |=m

BICI . (7)

Moreover, the collection of sets {BICI : |I | = m} is disjoint.

aUsing the convention that ∩∅ = Ω.
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General estimators of β

This proposition implies that

βn = E
[
Y1
{ ⋃
|I |=n

BI

}]
= E

[
Y1
{ ⋃
|I |=n

BICI

}]
=
∑
|I |=n

E
[
Y1 {CI}

∣∣BI

]
P (BI ) .

Therefore, if (i) reliable estimates of P
(
BI

)
are available, and (ii) it is possible to

simulate from the conditional measures P ( · | BI ), then the following is an unbiased
estimator of E[Y1{E ≥ n}]:

β̂n :=
∑
|I |=n

P(BI )

dR/
(
d
n

)
e

dR/(dn)e∑
r=1

YI ,r1{CI}I ,r . (8)

Here, similar to before, YI ,r and 1{·}I ,r denote independent sampling conditioned on BI .
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Efficiency (definition)

Definition

An estimator p̂γ of some rare probability pγ which satisfies ∀ε > 0

lim sup
γ→∞

Var p̂γ
p2−ε
γ

= 0 lim sup
γ→∞

Var p̂γ
p2
γ

<∞ lim sup
γ→∞

Var p̂γ
p2
γ

= 0

has logarithmic efficiency, bounded relative error, or vanishing relative error respectively.
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Efficiency (for our estimators)

Proposition

If for the estimator α̂1 (∀ε > 0)

lim sup
γ→∞

maxi<j P(Ai (γ),Aj(γ))

maxk P(Ak(γ))2−ε = 0 , lim sup
γ→∞

maxi<j P(Ai (γ),Aj(γ))

maxk P(Ak(γ))2
<∞ .

then the estimator has LE, BRE respectively.

Proposition

The estimator β̂n(γ) has BRE if

lim sup
γ→∞

max|I |=n P(BI )

βn(γ)
<∞.
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Efficiency results

If the Ai are independent events then the estimator α̂1 has BRE.

More generally? Again consider rare maxima, and to simplify, consider Xi
D
= Xj .

If ∃ asymptotic dependence (λ > 0), then α̂1 doesn’t have BRE.
If asymptotic independence (λ = 0), need to look at residual tail index η:

BRE if η < 1/2.
LE if η = 1/2.

For exchangable Archimedean copulas with generator ψ, we have BRE if ψ← ∈ C2 and
(ψ←)′′ is bounded at 0.
For X ∼ ELL(µ,Σ,F ) where F ∈ MDA(Gumbel), we have conditions for when α̂1 has
LE and when BRE. (This gives normal case.)

The estimator ̂(β1 ‡ α) from has BRE.
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Asymptotic independence

Look at

λij = lim
υ→1

P(Xi > υ | Xj > υ) = lim
υ→1

1− Cij(υ, υ)

1− υ
where λij ∈ [0, 1] is called the (upper) tail dependence parameter (or coefficient).

The canonical examples are the (non-degenerate) bivariate normal distribution for AI,
and the bivariate Student t distribution for AD.

For α̂1 to have BRE, all pairs in X must exhibit AI. This is a necessary but not sufficient
condition, therefore we will employ a more refined tail dependence measurement.
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Residual tail index

Ledford and Tawn first noted that the joint survivor functions for a wide array of
bivariate distributions satisfy

P(Xi > γ,Xj > γ) ∼ L(γ)γ−1/η as γ →∞

for a slowly-varying L(γ) and an η ∈ (0, 1].

In other words, this says that P(Xi > γ,Xj > γ) is regularly-varying with index 1/η. The
index is called the residual tail index (or, confusingly, the coefficient of tail dependence).
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Efficiency (using residual tail index)

Proposition

If the Ledford & Tawn form is satisfied for the maximal pair of X, that is,

max
i<j

P(Xi > γ,Xj > γ) ∼ L(γ)γ−1/η as γ →∞ ,

then the estimator α̂1 has:

1 BRE if η < 1/2 or if η = 1/2 and L(γ) 6→ ∞ as γ →∞,

2 LE if η = 1/2.

Proof.

lim sup
γ→∞

maxi<j P(Xi ≥ γ,Xj ≥ γ)

maxk P(Xk ≥ γ)2−ε = lim sup
γ→∞

L(γ)γ−1/η

(γ−1)2−ε = lim sup
γ→∞

L(γ)γ2− 1
η
−ε = 0
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Copulas and their residual tail indices

Table: Residual tail dependence index η and L(x) for various copulas. This is a subset of Table 1
of [heffernan2000directory] (their row numbers are preserved).

# Name η L(x)

1 Ali-Mikhail-Haq 0.5 1 + τ

2 BB10 in Joe 0.5 1 + θ/τ

3 Frank 0.5 δ/(1− e−δ)

4 Morgenstern 0.5 1 + τ

5 Plackett 0.5 δ

6 Crowder 0.5 1 + (θ − 1)/τ

7 BB2 in Joe 0.5 θ(δ + 1) + 1

8 Pareto 0.5 1 + δ

9 Raftery 0.5 δ/(1− δ)

(a) Copulas with BRE.

# Name η L(x)

11 Joe 1 2− 21/δ

12 BB8 in Joe 1 2− 2(1− δ)θ−1

13 BB6 in Joe 1 2− 21/(δθ)

14 Extreme value 1 2− V (1, 1)

15 B11 in Joe 1 δ

16 BB1 in Joe 1 2− 21/δ

17 BB3 in Joe 1 2− 21/θ

18 BB4 in Joe 1 2−1/δ

19 BB7 in Joe 1 2− 21/θ

(b) Copulas without BRE.
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Archimedean copulas

C(u1, . . . , un) = ψ←(ψ(u1) + · · ·+ ψ(un)).

Theorem (Thm. 3.4 of [charpentier2009tails])

Let (U1, . . . ,Un) ∼ C where C is an Archimedean copula with generator ψ. If ψ← is
twice continuously differentiable and its second derivative is bounded at 0 then ∀ i 6= j

lim
u→0

P(Ui ≥ 1− ux1,Uj ≥ 1− ux2)

u2
<∞

for any 0 < x1, x2 <∞.

Corollary

Consider using α̂1 for a distribution with common marginal distributions and a copula C .
If C satisfies the conditions of Theorem 2 then α̂1 has BRE.
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Efficiency (cases)

If the Ai are independent events then the estimator α̂1 has BRE.

More generally? Again consider rare maxima, and to simplify, consider Xi
D
= Xj .

If ∃ asymptotic dependence (λ > 0), then α̂1 doesn’t have BRE.
If asymptotic independence (λ = 0), need to look at residual tail index η:

BRE if η < 1/2.
LE if η = 1/2.

For exchangable Archimedean copulas with generator ψ, we have BRE if ψ← ∈ C2 and
(ψ←)′′ is bounded at 0.
For X ∼ ELL(µ,Σ,F ) where F ∈ MDA(Gumbel), we have conditions for when α̂1 has
LE and when BRE. (This gives normal case.)

The estimator ̂(β1 ‡ α) from has BRE.
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Numerical example: multivariate normal (R = 106)

Estimators
γ

2 4 6 8

α 5.633e-02 1.095e-04 3.838e-09 2.481e-15
α̂0 5.651e-02 1.140e-04 0* 0*
α 9.100e-02 1.267e-04 3.946e-09 2.488e-15

α−q 4.000e-02 1.055e-04 3.827e-09 2.480e-15
α̂1 5.650e-02 1.047e-04 3.946e-09* 2.488e-15*
α̂2 5.605e-02 1.075e-04 3.827e-09* 2.480e-15*

α̂
[1]
1 5.637e-02 1.096e-04 3.837e-09 2.481e-15

α̂
[2]
2 5.633e-02 1.095e-04 3.838e-09 2.481e-15

̂(β1 ‡ α) 5.634e-02 1.095e-04 3.838e-09 2.480e-15
̂(β2 ‡ α) 5.631e-02 1.095e-04 3.838e-09 2.481e-15

Table: Estimates of P(M > γ) where M = maxi Xi and X ∼ N4(04,Σ), ρ = 0.75.
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Numerical example: multivariate normal (R = 106)

Estimators
γ

2 4 6 8

α̂0 3.109e-03 4.075e-02 1* 1*
α 6.154e-01 1.566e-01 2.822e-02 3.142e-03

α−q 2.899e-01 3.665e-02 2.827e-03 1.147e-04
α̂1 2.977e-03 4.429e-02 2.822e-02* 3.142e-03*
α̂2 5.077e-03 1.839e-02 2.827e-03* 1.147e-04*

α̂
[1]
1 6.918e-04 4.639e-04 1.747e-04 2.192e-05

α̂
[2]
2 7.838e-08 8.647e-05 1.237e-05 4.010e-08

̂(β1 ‡ α) 6.564e-05 7.046e-05 6.227e-05 4.362e-05
̂(β2 ‡ α) 3.493e-04 1.593e-05 6.883e-06 3.340e-07

Table: Relative errors of the estimates of P(M > γ) where X ∼ N4(04,Σ), ρ = 0.75.
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Numerical example: multivariate Laplace (R = 106)

Estimators
γ

6 8 10 12

α 4.093e-04 2.435e-05 1.442e-06 8.526e-08
α̂0 3.910e-04 2.000e-05 2.000e-06 0*
α 4.130e-04 2.441e-05 1.443e-06 8.527e-08

α−q 4.093e-04 2.435e-05 1.442e-06 8.526e-08
α̂1 4.120e-04 2.441e-05* 1.443e-06* 8.527e-08*
α̂2 4.093e-04* 2.435e-05* 1.442e-06* 8.526e-08*

α̂
[1]
1 4.093e-04 2.435e-05 1.442e-06 8.526e-08

̂(β1 ‡ α) 4.093e-04 2.435e-05 1.442e-06 8.526e-08

Table: Estimates of P(M > γ) where M = maxi Xi and X ∼ L, d = 4.
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Numerical example: multivariate Laplace (R = 106)

Estimators
γ

6 8 10 12

α̂0 4.472e-02 1.786e-01 3.873e-01 1*
α 8.959e-03 2.473e-03 6.987e-04 2.003e-04

α−q 8.067e-05 8.266e-06 8.757e-07 9.506e-08
α̂1 6.516e-03 2.473e-03* 6.987e-04* 2.003e-04*
α̂2 8.067e-05* 8.266e-06* 8.757e-07* 9.506e-08*

α̂
[1]
1 8.470e-06 1.023e-05 3.019e-05 1.577e-05

̂(β1 ‡ α) 4.515e-05 2.948e-05 2.151e-06 2.833e-06

Table: Relative errors of the estimates of P(M > γ) where X ∼ L, d = 4.
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Multivariate Laplace

Let X ∼ L. We can define this distribution by

X
D
=
√
RY , where Y ∼ Nd(0, I),R ∼ E(1),Y ⊥⊥ R .

The distribution has been applied in a financial context [huang2003rare], and is
examined in [eltoft2006multivariate, kotz2001asymmetric]. From the former we have
that the density of L is

fX(x) = 2(2π)−d/2K(d/2)−1

(√
2x>x

) (√
1
2
x>x

)1−(d/2)

where Kn(·) denotes the modified Bessel function of the second kind of order n.

Sampling X−i | Xi > γ for the Laplace distribution

Xi ← E(
√

2)

Yi,Xi ← IG(
√

2|Xi |, 2X 2
i ).

Y−i ← Nd−1(0, Ip−1).

return XiY−i/Yi,Xi .
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Discussion

We begin with some trends which we expected to find in the results:

all estimators outperform crude Monte Carlo α̂0,

the estimators which calculate P(Xi > γ) outperform those which do not,

the estimators which calculate P(Xi > γ,Xj > γ) outperform those which only use
the univariate P(Xi > γ),

the importance sampling estimators improve upon their original counterparts,

the second-order IS improves upon the first-order IS.

Also noticed in the performance of the α̂ estimators:

the α̂1 and α̂2 estimators often degenerated (i.e. had zero variance) to α and α−q
respectively,

the degeneration begin for smaller γ when the X had a weaker dependence structure.
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Limitations

We do assume knowledge of marginal distributions. If we just have joint pdf. . .

Asymptotic properties 6⇒ finite-term accuracy

Who actually wants to estimate probabilities of events under 10−10?

Who actually believes probability estimates of events under 10−10?
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Thanks for listening!
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